
CALENDAR MANAGER:

AN OPEN SOURCE

EXTENSIBLEWEB APPLICATION

MATEJ REFKA

A Software Engineering Project

Submitted September 2021
for the degree of

MScAdvanced Computer Science

Supervisor
Dr Brian Mitchell

Inspector
Dr Mian Hamayun

Abstract

This project implements an open source, extensible calendar manager

web application. The application uses Google Calendar API, which popu-

lates the user’s calendar with events. A booking system is appended to this

calendar, enabling the user to construct booking slots. The booking slots

are shareable with outsiders who can register onto any of these slots. Any

booked slots are then written back to the owner’s Google calendar. The

calendar manager is perceived as a skeleton application because it is easily

maintainable and extensible. To achieve these properties, software architec-

ture and software design principles have been researched and implemented

within the calendar manager application. Additionally, a thorough evalu-

ation of these design decisions has been made, which is presented within

this report. This report can be utilized as a complete documentation of the

calendar manager application.

Keywords Software architecture, Software design, .Net 5, ASP.Net Core,

Vue.js, School of Computer Science, University of Birmingham, UK, Calendar

Manager: An Open Source Extensible Web Application

Contents

Table of contents

Abstract i

1 Introduction 1

1.1 Overview . 1

1.2 Limitations . 1

1.3 Definitions . 1

1.4 Report structure . 2

2 Background 3

2.1 PROMPT . 3

2.2 Reference web applications . 3

2.3 Calendar API . 4

2.4 Server side framework . 4

2.5 Software architecture reference . 5

2.6 Application architecture . 5

2.7 Server side solution structure . 6

2.8 Web technologies . 7

2.9 Web accessibility reference . 8

3 High level system overview 8

3.1 Calendar skeleton . 9

3.2 Booking system . 10

4 System implementation 12

4.1 User authentication and authorization . 12

4.2 API . 15

4.3 Database . 19

4.4 Routing . 20

5 System architecture 21

5.1 Dependency injection . 21

5.2 Revised project structure . 21

5.3 Browser-side HTML design . 23

5.4 Browser-side Vue.js design . 25

5.5 Documentation . 27

6 Results 28

6.1 User interfaces . 28

6.2 Software architecture . 31

6.3 Accessibility . 31

7 Analysis 32

7.1 Encapsulation principle evaluation . 32

7.2 Single responsibility principle evaluation . 32

7.3 Don’t Repeat Yourself (DRY) principle evaluation . 34

7.4 Testing . 35

7.5 Accessibility testing . 36

7.6 Documentation revised . 38

↖Contents ↖Tables ↖Figures ↗References ii

8 Conclusions 39

8.1 Summary of the project . 39

8.2 Future work . 39

8.3 Personal development . 40

8.4 Reflections . 40

A Test plan 42

A.1 Server-side testing . 42

A.2 Client-side use-case testing . 43

A.3 Usability testing . 45

B Source code 46

References 47

List of tables

1 Routing table within the routing middleware . 21

2 Predefined software design principles . 31

3 Contrast ratio of components within Calendar Manager . 31

4 Unit tests . 42

5 Integration tests . 42

6 Functional tests #1 . 43

7 Functional tests #2 . 44

8 Functional tests #3 . 45

List of figures

1 MVC implementation within ASP.NET . 6

2 Project solution . 7

3 Default calendar sketch . 10

4 Booking slot pop-up sketch . 10

5 Booking slots sketch . 11

6 Booking calendar sketch . 12

7 OAuth 2.0 authorization protocol . 13

8 Desired program flow . 18

9 Actual program flow . 19

10 Underlying database . 20

11 Circular dependency . 23

12 HTML semantic structure . 25

13 Vue.js MVVM design . 26

14 Vue.js life-cycle (simplified) . 27

15 Calendar UI . 29

16 Booking UI . 30

17 Single responsibility principle violation . 33

18 Single responsibility principle enforced . 34

19 Proposed calendar component system . 35

20 Desired testing pyramid (left) vs actual testing distribution (right) 36

21 Proposed documentation coverage . 38

Acknowledgements

First and foremost, I would like to thank my supervisor, Brian Mitchell, for undertaking

the role as my supervisor for this project. His guidance, support, and encouragement

throughout my Master’s year has been invaluable.

I would also like to extend my thanks to my inspector, Mian Hamayun, who has

been providing me with valuable feedback at different stages of this project.

Finally, I would like to thank my friends Ema Csutorova, Joseph Morphew, and my

parents for their continued support throughout my academic life.

1 Introduction

1 Introduction

1.1 Overview

This project implements an open source, extensible calendar manager web application.

The calendar manager application consists of an integrated calendar and a booking

system. The booking system implements a feature where any booked events are written

back to the owner’s calendar, which is the application’s unique selling point. To the

author’s best knowledge, no calendar schedulingweb application supports such feature,

as of this writing.

A strict time limitation has been enforced upon this project, thus a full scale calendar

manager web application cannot be implemented. Therefore, this project is made

publicly available, inviting further extensions by outside parties. The incentive to build

upon such project comes from the lack of similar open source projects. The amount of

open source business or commercial software is far lesser than open source research

or development software.

As a result, this project is split up into two main components, of equal importance.

The first component is the calendar manager web application. The application com-

prises of a calendar, populated with events from a selected third-party calendar API,

and an events booking system, implementing the aforementioned unique feature. The

second component ensures that all code written for the first component is suitable to

be publicly available, by addressing security concerns and code usability. This code

is implemented and evaluated using appropriate software architecture, design, and

principles to ensure maximum code maintainability and system extensibility.

1.2 Limitations

The implemented web application is a skeleton calendar manager, functioning as a

structural framework for future extensions. This can be viewed as a minimization

problem. All calendar and booking features are minimized, while the predefined

functionality is fully implemented. The predefined functionality involves creating

a calendar, populating this calendar with events pulled from a selected third-party

API, allowing the addition of bookings, sharing these bookings with chosen users, and

writing any booked slots back to the owner’s calendar. Additional proposed features

based on initial background research are presented within ‘8.2 Future work’ section.

1.3 Definitions

The naming convention of web technologies can be confusing, because the labels

describing hardware and software can be used interchangeably based on a scenario or

a view point. For example, a client is connecting to a server doggo.com to view images

↖Contents ↖Tables ↖Figures ↗References 1

1.3 Definitions 1 Introduction

of dogs. The client doggo.com is connecting to a database server to retrieve images of

dogs. A clear definition of terms is needed:

Browser/user refers to client-side, front-end of Calendar Manager web application.

Client refers to server-side, back-end of Calendar Manager web application. The

server-side of Calendar Manager often acts as a client to external servers within

this project.

Server third-party, external servers, such as APIs and databases.

Application refers to the combination of client-side and server-side of Calendar Man-

ager web application.

User refers to an end user utilizing Calendar Manager application service.

1.4 Report structure

§1 Introduction briefly describes the implemented web application and its functional-

ity. It also provides motivation for the two predefined components of this project,

the calendar manager application, and software architecture. This section also

draws boundaries around these two components to eliminate any preconcep-

tions about what they do not solve, and draw attention to what they do solve.

Additionally, a list of definitions is supplied, which is vital and should be used as

reference material throughout this report.

§2 Background collates a list of resources required for the two predefined components.

The web application requires a list of technologies, whilst software architecture

requires a list of software principles and references that the application should

adhere to. Lastly, this section also covers preliminary design choices, required for

the application setup.

§3 High level system overview gives a high level overview of the implemented calen-

dar manager web application. The system overview is described against applica-

tion sketches as they highlight the key functionality better than the implemented

system.

§4 System implementation provides intricate explanations of how Calendar Man-

ager functions. This covers back-end implementations, including data handling,

routing and security. This section aims to cover the first component of this project.

§5 System architecture details the second component of this project. It describes the

design choice made within both, the back-end, and the front-end of Calendar

Manager, and provides justifications for these.

§6 Results contain the deliverables of the first component, the user interfaces. It also

contains results of the second component; evaluating whether Calendar Manager

adheres to the predefined design principles.

§7 Analysis evaluates the calendar manager application via unit testing, integration

testing and functional testing. Software design and software principles are also

evaluated within this section.

↖Contents ↖Tables ↖Figures ↗References 2

1.4 Report structure 2 Background

§8 Conclusions recaps the project and evaluates whether, and to what extent, the

project aimsweremet. It also proposes additional features that could be appended

onto the calendar manager application. Lastly, a personal reflection on the whole

project is made.

2 Background

2.1 PROMPT

The Internet is vast (de Kunder, 2016). It has become the largest medium of information,

built upon its key concept of accessibility. It is extremely easy to contribute and access

information on the Internet. An inherent flaw with this, is the lack of information

filtering, leading to equivalently accessible misinformation. This project is strictly

serving for educational purposes, with this report and all the code publicly available.

The secondary aim is to make the system maintainable and extensible, enabling future

work. It is therefore imperative that modern software practices are utilized, and all

the information collected throughout this project is accurate. To achieve this, critical

analysis, and evaluation of all sources of information must be conducted.

The chosen evaluation strategy is PROMPT (Huckle, 2019). The PROMPT system

considers evaluating six aspects of a given source: presentation, relevance, objectivity,

method, provenance, and timeliness. To avoid repetition, only the criticism is high-

lighted. The methodology of how the six aspects were derived is not included in this

article.

To ensure sufficient entropy, a comparison between the chosen technology or

methodology and the alternatives has been done. The alternatives considered were

CRAAP (Myhre, 2012) and RADAR (Mandalios, 2013). All three methods cover the same

aspects of information evaluation, only differing with the use of acronyms. CRAAP

publication has 5 citations, whilst the RADAR publication has 54 citations. PROMPT is

an article on The Open University. The presumption is made that this article has more

exposure than the RADAR publication and therefore would be considered as more

standardized and more appropriate for this project.

2.2 Reference web applications

This project implements a calendar interface and a simple booking system. Both of

these components require reference calendar applications. These references will aid

throughout the project with interface design and system implementation. The system

implementation of these reference applications will assist when making Calendar

Manager system design choices. For example, designing the functionality of a calendar

grid.

The pool of reference applications for the calendar interface include Google Cal-

endar, Microsoft Outlook Calendar, Calendar.com and Apple Calendar. These were

↖Contents ↖Tables ↖Figures ↗References 3

2.2 Reference web applications 2 Background

chosen because they are the most popular calendars, with most calendar users using

their interfaces. Following the design of these standardised interfaces ensures that the

Calendar Manager interface is inherently easy to use. All four calendars have almost

an identical interface design, therefore all four are viable for use, interchangeably, as

the interface reference.

The initial references for the booking system are Calendar.com, Calendly and Doodle,

as the most popular calendar manager web applications. The aim is to minimize the

booking system functionality, while implementing a unique feature. The proposed

feature that none of these booking applications implement, is the ability to write booked

events back into the original user’s calendar. This feature will be the unique selling

point of Calendar Manager.

2.3 Calendar API

The default Calendar Manager calendar interface will be populated with events col-

lected from a third-party calendar. The events will be pulled into Calendar Manager

via the third-party API. The initial pool of third-party calendars consists of Google

Calendar, Microsoft Outlook Calendar, Calendar.com and Apple Calendar, the most

popular calendars. Targeting the most popular calendar will ensure that Calendar

Manager has the largest possible user base.

Calendar.com does not provide an API for its events. Apple Calendar provides its

EventKit Calendar API, Google Calendar provides its Google Calendar API and Outlook

Calendar provides its Graph API. The EventKit Calendar API has a brief documentation,

compared to the detailed documentation of the other two APIs. Additionally, the

documentation shows the API requests in Swift and Objective-C languages, neither

of which are considered to be used for Calendar Manager. The Google API calls are

documented in Java, whereas the Graph API calls are documented in C#. Both of these

languages are considered for the Calendar Manager implementation and both APIs are

well documented. To select one of these two, a comparison of its total users is made.

The best available metric is the App Store number of downloads. Outlook Calendar has

over 500 million downloads, whilst Google Calendar has over one billion downloads.

Therefore, the chosen third-party calendar is Google Calendar.

Since the chosen API is Google Calendar API, the selected interface reference web

application is now Google Calendar, purely out of convenience throughout develop-

ment.

2.4 Server side framework

The available options for the server side framework are Express which uses Node.js,

Spring which uses Java, and ASP.NET which uses C#. This initial pool is comprised of

languages that I have at least some experience with, and their corresponding frame-

works. Calendar Manager will use the server side extensively for HTTP requests and

↖Contents ↖Tables ↖Figures ↗References 4

2.4 Server side framework 2 Background

responses, handling API response objects, customising endpoints for the dynamically

generated booking calendar URL, as well as contain business logic. I am most confident

with C# and have minor experience with ASP.NET. To ensure the deliverables are met

on time, and at the highest possible standard, the chosen server side framework is

ASP.NET.

2.5 Software architecture reference

A substantial part of Calendar Manager revolves around software architecture. This

is to ensure that the application is maintainable, scalable and extensible. The written

software should follow modern design principles and practices. Microsoft documenta-

tion provides a reference to an e-book ”Architecting Modern Web Applications with

ASP.NET Core and Microsoft Azure” (Smith, 2021). This e-book covers the current .NET

developer platform, which will be used for the Calendar Manager project. An alternat-

ive to this e-book is an article recommended by the e-book, which covers recommended

programming principles (Kappert et al., 2021). The official Microsoft e-book has been

chosen because it is much more extensive and is specific to ASP.NET framework. This

e-book, in combination with Microsoft’s ASP.NET documentation (Anderson et al., 2021),

will be used as a reference throughout the project’s development cycle, starting from

the next subsection to the evaluation of the project.

2.6 Application architecture

The twohigh-level approaches toweb application architecture areModel-View-Controller

(MVC) pattern, and Single Page Application (SPA) pattern (Smith, 2021).

MVC heavily relies on server-side the functionality. This includes business logic,

accessing data, making requests and parsing responses. The only functionality handled

by the browser-side is web page reactivity. The Controller handles requests and re-

sponses. TheModel handles data through data objects. The View handles user interface.

Within MVC, the models are passed between the controllers and the views, allowing

the server to pass data to the browser and vice versa (Smith, 2021).

SPA involves the use of browser-side for all application business logic, routing, data

retrieval, making requests, and processing responses. Because all application logic is

executed within the browser, the benefit is a reduced network load, since there are

no back and forth calls transferring data between the browser and the server. The

biggest downside with SPA is the difficulty in securing sensitive information. Exposing

confidential data to the browser is generally a bad practice and can lead to security

vulnerabilities (Smith, 2021). Calendar Manager will include user authentication and

authorisation, as well as making API calls. These functions will inherently involve

confidential data which will need to be secured, such as API keys or authorization

tokens. Additionally, I am much more confident in my server-side than browser-side

abilities. Therefore, the chosen application design pattern is MVC.

↖Contents ↖Tables ↖Figures ↗References 5

2.6 Application architecture 2 Background

The MVC implementation within ASP.NET is entangled with its routing system.

ASP.NET allows the addition of middleware to the application pipeline (Smith, 2021).

This middleware is executed on every request made by the web application. The

routing middleware parses and routes all requests into an appropriate endpoint within

the application (Anderson & Smith, 2020). An example below is added for clarification.

The browser makes a request to the Calendar Manager host (CM) to get the home

page, specified by the path ‘/Home/Index’. This request is passed into the application

pipeline. First, the explicitly definedmiddleware parses this request. One of the defined

middleware is the routing middleware which routes this request into an application

endpoint. The endpoint is an ‘Index’ action (method) of the ‘Home’ controller. The

Index action passes a Model into the View, which is then returned and served back to

the browser.

Figure 1MVC implementation within ASP.NET.

2.7 Server side solution structure

The calendar manager application can be structured within a single layer, or as a

combination of multiple layers. Layers split the application logic, where each layer

contains the corresponding low-level functionalities (Smith, 2021). Calendar Manager

will be split into three layers. The first layer will contain the Controllers and the Views.

The second layer will hold all business logic required for the first layer. This layer will

be implemented as a class library. The class library and its logic can be reused with

↖Contents ↖Tables ↖Figures ↗References 6

2.7 Server side solution structure 2 Background

other projects. The final layer will hold unit tests which will be used to test the business

logic of Calendar Manager.

Layered architecture provides structure to the application. At a high-level, it also

adheres to the single responsibility principle, which states that each component should

only have responsibility over a single part of Calendar Manager’s functionality (Smith,

2021).

Within ASP.NET, a project solution holds application layers which are referred to

as ‘projects’. The layered architecture introduces dependencies to link these projects

together. The Calendar Manager project is dependant on the Calendar Manager class

library and the Calendar Manager unit tests are dependant on both, the Calendar

Manager project and the Calendar Manager class library.

Figure 2 Project solution.

2.8 Web technologies

The majority of modern web pages are constructed with the combination of HyperText

Markup Language (HTML), Cascading Style Sheets (CSS) and JavaScript. HTML defines

the structure, CSS defines the appearance and JavaScript defines the behaviour of a

web page.

The standard for page structuring is HTML 5, which will be used. There are several

technologies and options available for styling. Syntactically awesome style sheets

(Sass) is a preprocessor to CSS. The Sass code is lower level, which is compiled into

CSS language. This allows the user to utilize lower level constructs such as variables,

nesting or functions. There are also CSS frameworks available, including Tailwind CSS,

Bootstrap and Bulma. These frameworks provide predefined element classes. This is a

convenient method to style elements, however the predefined classes tend to clutter

HTML code, therefore CSS frameworks will be omitted. The use of Sass is preferable as

↖Contents ↖Tables ↖Figures ↗References 7

2.8 Web technologies 3 High level system overview

it allows code re-usability. However, styling is the lowest priority within this project,

and due to project time constraints, standard CSS will be used.

The browser-side functionality of Calendar Manager will be handled by a combina-

tion of Razor and JavaScript. Razor is used to load server-side models into the HTML

Document Object Model (DOM). It is also used to post models from browser-side back to

the server-side. JavaScript will be used to handle the browser-side functionality of the

Calendar Manager interfaces. Calendar Manager is expected to grow in functionality

by extending the system with more features. These extra calendar features will mostly

be implemented in browser-side. Therefore a front-end framework for JavaScript is

needed to enforce structure, enabling code reusability and better readability. The most

popular JavaScript frameworks are Angular, React and Vue.js. These are assumed to

have the best documentation and support. All three are well supported and viable for

this project (Pekarsky, 2020). The chosen framework is Vue.js because it is assumed

to be the easiest to learn, which is a beneficial attribute as this project has strict time

constraints.

The official Vue.js (You et al., 2021) documentation will be referenced throughout

the browser-side development process. This will aid with providing examples of how

to use and utilize the framework, but it will also ensure that appropriate design within

the framework is enforced. A reference to HTML and CSS is also required. The two

considerations for this reference are w3schools (W3Schools-Contributors, 2021) and

MDNWeb Docs (MDN-Contributors, 2021). Both of these resources are considered as the

standard for web references andweb standards. In terms of provenance, the w3schools

resource references the World Wide Web Consortium (W3C) in its own name, while it

is not associated with them. Additionally, the .NET documentation references the MDN

Web Docs rather than w3schools. The MDNWeb Docs are preferred and chosen.

2.9 Web accessibility reference

Web accessibility is important within any website, as it allows equal access to all users,

regardless of their disabilities. The accepted standard for web applications are Web

Content Accessibility Guidelines 2.1 (WCAG 2.1) (Kirkpatrick et al., 2018). The WCAG 2.1

defines three conformance categories: A (lowest), AA (medium), and AAA (highest)

for each accessibility component. It is difficult to achieve AAA conformance across all

accessibility components. For this reason and the limited time frame of this project, the

WCAG 2.1 will only be used to evaluate the final product. This evaluation will then act

as the basis for further extension of Calendar Manager, in terms of accessibility.

3 High level system overview

The Calendar Manager functionality can be broken up into two main implementations.

First, a skeleton calendar which is dynamically populated with user’s Google events,

and second, a booking system.

↖Contents ↖Tables ↖Figures ↗References 8

3.1 Calendar skeleton 3 High level system overview

3.1 Calendar skeleton

The home page of Calendar Manager is a simple login page, where the user signs in

with their Google account. Upon successful user authentication and authorization with

sufficient permissions granted to access the user’s Google calendar, the user’s events

are pulled from Google calendar API. The collected events are passed to the browser

and the user is redirected to the calendar page. The skeleton calendar is constructed

dynamically using the current date on page load. The current date is then used to

compute and populate the seven dates in the current week, with their corresponding

day names (Monday-Sunday). The current week and date are then used to compute and

populate the current month or two overlapping current months. The current month is

used to compute and populate the current year or two overlapping years. Navigating

the calendar one week forward or backward adjusts the current day by seven days

and executes the previous functions on this new date again. The ‘previous’ button is

disabled upon reaching the year 2009, because Google calendar has been released to

the public in July 2009. There are no constraints placed on the ‘next’ button.

The calendar grid is comprised of 288 buttons, each representing five minutes of the

week. The buttons are also dynamically generated using Vue.js ‘v-for’ loop, where each

button is assigned a unique reference. The decision has been made to have the smallest

time unit five minutes rather one minute to avoid visual clutter. Additionally, both

Google Calendar and Doodle use five minutes as the smallest visual interval for their

calendars. Google calendar displays all events that span over three days outside of the

main calendar to avoid clutter. Calendar Manager also filters out all events spanning

over three or more days from the events list. The list of long events can be lengthy,

depending on how long the user has been using Google calendar. Therefore, all past

long events are deleted, and the remaining future long events are added to a list in

the side panel, in an ascending order of the event’s start date. Examples of long events

include holidays or religious events. Having the long events side by side with the main

calendar, without cluttering it, can aid the user with choosing appropriate booking

slots. The remaining events list is processed further to capture all events corresponding

to the current week. These events are then matched to their corresponding buttons in

the calendar grid based on the button references. This allows the mapping of events to

the calendar.

↖Contents ↖Tables ↖Figures ↗References 9

3.1 Calendar skeleton 3 High level system overview

Figure 3 Default calendar sketch.

3.2 Booking system

The mapped events are baked into the calendar and are disabled. The rest of the

calendar grid however, is still clickable, replicating Google calendar functionality.

Instead of adding a new event by clicking on an empty space within the calendar grid,

Calendar Manager adds a new booking slot. This is accomplished via a booking slot

pop-up, where the user enters a time period for their selected slot.

Figure 4 Booking slot pop-up sketch.

Upon the addition of a new booking slot, a custom booking slot event is added to

the original calendar. The user is able to add multiple booking slots. The booking slots

are displayed in a side panel list, in an ascending order. Each booking slot in the list

is accompanied by a corresponding ‘remove’ button. On ‘remove’, the booking slot

↖Contents ↖Tables ↖Figures ↗References 10

3.2 Booking system 3 High level system overview

is removed from the list, and the booking slot event is removed from the calendar.

‘Enforce period’ checkbox allows the user to divide their chosen booking slots into

smaller periods. These periods are assigned a user-defined period name and period

length. An example below demonstrates a teacher creating two booking slots, which

are then split into 13 periods for 13 students. On ‘submit’, a dynamically generated URL

for this specific booking session is generated. Within the given example, the teacher

then shares this link with the 13 students.

Figure 5 Booking slots sketch.

Within the given example, the students open the shareable link. The booking calen-

dar displays the appropriate booking session based on the provided URL. Clicking on a

booking slot opens a popup. The popup provides a field labeled with the aforemen-

tioned period name. On submit, the chosen booking slot is written into the calendar

owner’s Google Calendar as an event. The event name is the input given in the booking

popup. The selected booking slot is then deleted from the booking calendar. Within

the given example, the teacher’s Google Calendar is populated with events, labelled

with the student names.

↖Contents ↖Tables ↖Figures ↗References 11

3.2 Booking system 4 System implementation

Figure 6 Booking calendar sketch.

4 System implementation

4.1 User authentication and authorization

The OAuth 2.0 protocol is used to authorize third-party clients accessing the resources

of some external server. In this case, the client is the calendar manager web application.

This authorization is done on behalf of the service users, where the third-party client

obtains user resources from the external server (Hardt, 2012). The calendar manager

web application will be authorized with the Google Authorization server, on behalf of

Google users.

First, the calendar manager web application is registered with Google through

Google API Console, which is Google’s API management service. Upon registration, the

API Console generates a Client ID string and a Client Secret string, which are interpreted

as a unique application identification. These credentials are used to identify the client

when making requests and to confirm that the client has been registered with Google.

Next, the client makes a token request to Google Authorization Server. This token

request states the requested APIs and the scope of these APIs. The calendar manager

web application is requesting scopes from the Google Calendar API. The request token

will also prompt user authentication. The users login to their Google Account and grant

permissions presented from the token request scope. The full user authentication is

handled by the Authorization Server. The Authorization Server then sends back an

authorization code, only containing the scopes that the user has permitted.

↖Contents ↖Tables ↖Figures ↗References 12

4.1 User authentication and authorization 4 System implementation

The authorization code is then sent to Google API Exchange Server. Upon receiving

the authorization code, the Exchange Server sends back an access token and a refresh

toke. The access token has a limited lifetime. The refresh token is used to generate

new valid access tokens. The access token is then used to access the specific Google API

(Azad, 2021).

Figure 7 OAuth 2.0 authorization protocol.

The acquired Calendar Manager’s credentials, composed of a Client ID and a Client

Secret must be protected. A disclosure of these credentials would allow an attacker to

make requests to Google on behalf of Calendar Manger by impersonating the client

web server. To avoid this, all transmissions between the client web server and Google

servers must use Transport Layer Security (TLS) cryptographic protocol (Lodderstedt

et al., 2013).

The TLS protocol is built on top of Hypertext Transfer Protocol (HTTP), encrypting

all communication between servers over the Internet. HTTP over TLS is equivalent

to Hypertext Transfer Protocol Secure (HTTPS). The ASP.NET Web Framework allows

the addition of its preconstructed middleware to the web application pipeline. The

chosen middleware is then executed on every request made by the web application.

HTTPS Redirection middleware and HTTP Strict Transport Security (HSTS) middleware

↖Contents ↖Tables ↖Figures ↗References 13

4.1 User authentication and authorization 4 System implementation

have been explicitly added into the pipeline of Calendar Manager. HTTPS Redirection

middleware redirects all HTTP requests to a port reserved for HTTPS if one exists,

otherwise the request fails. This ensures that the client credentials sent to Google

servers are transmitted over HTTPS. Additionally, all other outgoing requests from

the Calendar Manager are redirected to HTTPS, regardless of the specified protocol

and implementation of the HTTP client making the request. HSTS middleware adds a

”Strict-Transport-Security” field to the response header of every request. Upon receiving

the header, the browser forces all transmissions to use HTTPS instead of HTTP. Within

Calendar Manager, this policy forces all requests made by the browser to use HTTPS

for transmissions, regardless of the axios HTTP client implementation. As a result of

adding the two middleware, all requests made from the Calendar Manager back-end

and fron-end are automatically redirect to a secure HTTPS port (Anderson, 2019).

The client credentials are required every time the client makes an API call on behalf

of a user. Therefore, these credentials must be stored. The naive option is to store these

in a configuration file within the Calendar Manager project. This method is not secure

because this software is open source, the source code is publicly available and the

credentials would be exposed to potential attackers. The next option is to store these

in a secure database. This would result in a table with two columns and only a single

entry, because the same application credentials are used for all users of the Calendar

Manager application. This is a valid and a secure solution, however constructing an

entire database for the sake of storing one entry, which can even be reduced to one

string, is inefficient. The chosen solution is to use a secret configuration file located

outside of the project solution, secured on the development machine. The required

credentials are then pointed to this file. This keeps the application credentials out of

source control. ASP.NET uses a secret manager for the secret configuration file, which

has been utilized, that maps the Windows file path to its corresponding Linux file path

and vice versa. This ensures that when transferring from development environment

on one operating system to production environment on a different operating system,

there is no need to adjust file pathing for the secret configuration file in the source code.

The secret configuration file is simply, manually transferred over to the correct file path

and the secret manager handles path mapping automatically (Anderson et al., 2020).

To request an authorization code from Google Authorization Server, a ‘state’ para-

meter is set. This is used to prevent Cross-Site Request Forgery attacks (CSRF). The state

token is given a random value, which is hard to guess. Without this anti-forgery token,

an attacker is able to POST a response to Calendar Manager, acting as the Authorization

server, given that they can guess or know the callback URL (Auger, 2010). The callback

URL is known because this project code is publicly available. In the current version of

the application, the callback action checks the returned authorization code and then

POSTs a request to exchange the authorization code for an access token. Google have

designed this extra exchange verification step to protect application users from CSRF

attacks, in case of poor application implementation. Therefore, if an attacker forges

the response with their own authorization code, the exchange request will be invalid

↖Contents ↖Tables ↖Figures ↗References 14

4.1 User authentication and authorization 4 System implementation

because of the invalid authorization code. The application throws a ‘Bad Request’

exception, and the user is protected. The state token is still essential because this ap-

plication is open-source. If the application is extended in a way where the callback

action calls some other critical function, the state token would prevent an unauthorized

attacker from triggering and performing this critical function.

The recommended value for an anti-forgery token is a 30 character long, randomly

generated string (Azad, 2020). A recommended scheme to generate the 30 character

long anti-forgery token is not defined. An arbitrary scheme [a-z, A-Z, 0-9] has been

chosen. This specific anti-forgery token implementation generates the recommended

30 characters long string from the 62 different options, equating to 6230 permutations.

To ensure the implemented state token value is ‘hard to guess’, a comparison with

Universally unique identifier (UUID) system is made. UUID is the current standard

for labelling groups of data, within computer systems, with a unique ID. A UUID

is composed of 32 randomly generated characters using a scheme of hexadecimal

characters. This results in 1632 permutations. The space of all UUIDs is so large that

generating two identical UUIDs is practically impossible (Wikepdia-Contributors, 2021c).

The anti-forgery token implementation has a higher entropy than UUIDs. A possible

state token value is hard to guess.

Upon successful user authentication and authorization, user access and refresh

tokens are retrieved from the Google API Exchange Server. Each user has a correspond-

ing access and a refresh token in a one-to-one-to-one relationship. To be able to handle

multiple users accessing Calendar Manager at the same time, in parallel, a database

to store these tokens is created. The access token is instantly used to request user’s

calendar events. However it must still be stored in a database to allow page reloading.

On page reload, a new calendar instance is instantiated, losing the previously assigned

access token local variable. Therefore, the access token is retrieved from a database.

The access token has a limited lifetime, one hour, after which it is no longer valid,

resulting in an unauthorized access exception. In such case, the exception is caught

and a refresh token is used to request a new valid access token, which is updated into

the database and is used to retrieve user events. The refresh token is also used within

the booking calendar. When a new booking is submitted, the refresh token is used to

obtain a new access token, which is then used to insert a new event into the calendar

owner’s Google calendar.

4.2 API

For Calendar Manager to be able to make requests to a Google API, an API key is needed.

The API key is a unique identifier for a given web application. Its unique value is

generated based on the specified application and API restrictions. The application is

Calendar Manager and the API restriction is Google Calendar API. Similar to client

credentials, the API key is manually generated with the Google API console. The API

key is then used in combination with a specific user’s access token to make API calls to

↖Contents ↖Tables ↖Figures ↗References 15

4.2 API 4 System implementation

Google Calendar API. The API key is secured and stored in secret configuration because

its disclosure would allow an attacker to make API calls on behalf of Calendar Manager.

The Calendar manager application requires two Calendar API scopes for full func-

tionality. Permission to view events on all calendars (calendar.events.readonly), and

view and edit events on all calendars (calendar.events). These scopes are permitted or

declined by the user during user authentication process.

The recommended approach is to use incremental authorization. In the context of

CalendarManager, during the initial login, the user is asked for ‘calendar.events.readonly’

scope, which allows the web application to dynamically populate the user’s calendar

with Google events. The user then chooses their booking slots and booking options.

Upon generating the booking link, the user is then asked for ‘calendar.events’ scope.

This will allow any booked slots to be written into the user’s Google calendar. Incre-

mental authorization requests scopes in context, allowing the user to better understand

why the given scopes are required and as a result, the user is more likely to accept

the requested permissions. It is most effective when asking the user for permissions

across multiple APIs (Daugherty, 2021a). The downside of incremental authorization

is the overhead on the user in the amount of tasks that they need to carry out. In the

context of Calendar Manager, the main issue arises with the natural human memory

phenomenon of closure. The human short term memory is finite and limiting, and as

a result, doing tasks in series is easier and preferable than multitasking. Closure is a

human desire to complete tasks in order to clear the short term memory stack. During

the Calendar Manager booking process, the user executes a task of choosing available

booking slots, followed by choosing the booking options, finalised by submitting and

generating a link for their specific booking session. Introducing the permission request

for ‘calendar.events’ just before submission would introduce another task of trying to

understand the context of the scope and deciding whether to permit it or not. This new

task is placed right before the closure of the first task, which is extremely inefficient for

the human short term memory and processing (Dix et al., 2005). In addition, asking the

user for full access to their Google calendar during the initial sign in does fit the context

of ‘signing into a calendar manager application with Google calendar integration’.

During the initial user log in, there is an option to request ‘calendar.events.readonly’

and ‘calendar.events’, where the user decides on only allowing ‘calendar.events.readonly’,

or both. The Calendar Manager functionality is then dependent on the allowed scopes.

If only ‘calendar.events.readonly’ is chosen, then the calendar is dynamically populated

with Google events, but the booking system is disabled. Without the booking system,

Calendar Manager is useless as it provides no features that Google Calendar cannot do.

But, Calendar Manager is specifically designed to be extendable with further features.

However, therewere no possible calendar features discovered during the research stage

that solely require ‘calendar.events.readonly’. As a result, ‘calendar.events.readonly’ is

deemed redundant and is removed from the requested scopes.

When a user of Calendar Manager clicks on ‘Log in’, they authorise with Google and

are then redirected to their dynamically generated calendar web page. The standard

↖Contents ↖Tables ↖Figures ↗References 16

4.2 API 4 System implementation

method of implementing this back-end is to use a single Calendar controller. However,

the functionality can be divided into several distinct components. Therefore, a decision

has beenmade to split these components into several controllers to enforce separation of

concerns design principle. An Authorization controller handles user authentication and

authorization with Google servers. It is vital that this controller is completely isolated

from any view because the authorization code is passed back to the controller through

the URL. Serving a view using this controller’s endpoint would result in the response

parameters being exposed to the browser. Security vulnerabilities could then arise if

Calendar Manager was extended with third-party plugins or scripts which would have

access to the authorization code (Daugherty, 2021b). Upon successful authentication

and authorization, the Authorization controller obtains an access token and a refresh

token. Both tokens are stored in a database for later use and the access token is also

passed to the API Controller. The API controller uses the retrieved access token with the

API key to request user’s calendar events. The received JSON response is then parsed

into an events model and the model is passed to the Calendar Controller. The Calendar

Controller returns a Calendar View with the events model passed in as the parameter.

The Calendar View then serves the user a dynamically generated calendar HTML page

using the passed events model.

↖Contents ↖Tables ↖Figures ↗References 17

4.2 API 4 System implementation

Figure 8 Desired program flow.

Unfortunately, it was not possible to redirect to another controller or another action

from the API controller action receiving the JSON events response. The system auto-

matically returned the Home View. Upon further investigation via the .NET debugger,

it was found that any action receiving a POST response must return a view. Since no

view is returned, the previously used view, the Home View, is automatically returned.

This functionality is baked into ASP.NET. To overcome this hurdle, all API Controller

functionality is placed in an action of the Calendar Controller. This single action makes

a request to the API, retrieves the JSON response, parses it into an events model, which

is then passed into the Calendar View, which renders the dynamic calendar HTML

page.

↖Contents ↖Tables ↖Figures ↗References 18

4.2 API 4 System implementation

Figure 9 Actual program flow.

4.3 Database

An underlying relational SQL Server database is used to control the state of the applica-

tion and provide secure storage for user secrets. The connection string to this database

is stored in the secret configuration file, along with client secrets and the API key.

Upon user authentication and authorization, the user session is stored in a table

as a combination of their email, access token and refresh token. These control the

application state. There are no passwords, permissions or other extra user secrets

utilized. Upon user login, the access token is used to populate the calendar. Upon user

logout, the website simply redirects to the home page. The permissions are controlled

by Google API, which throws an error if an invalid access token is supplied.

The database also stores booked events. A set of booked events is identified via a

dynamically generated string, the dynamic URL. This mapping is used to transfer the

user-defined booking events to the booking calendar. The most popular link-shortening

service bit.ly, uses seven characters from 62 different options (A-Z, a-z, 0-9). This equates

to three trillion permutations and is considered sufficient. Bit.ly manages all the URLs

to ensure that there are no collisions (Gould et al., 2016). To avoid this overhead in

complexity, Calendar Manager generates the dynamic string from a pool large enough,

↖Contents ↖Tables ↖Figures ↗References 19

4.3 Database 4 System implementation

such that no collisions are possible. The chosen scheme is [a-z, A-Z, 0-9], because these

are the most commonly used characters on keyboard inputs. As previously established,

the UUID space is large enough to guarantee that no collisions are possible. To match

this space, the dynamic URL string is given 21 characters.

The database is constructed using entity framework. Entity framework is an object

mapping framework which maps SQL Server tables to classes within the Calendar

Manager solution. This allows the use of C# syntax to define tables, columns, and

column properties. The database created is a relational database, therefore foreign

keys have been used. These enforce the referential integrity by preventing the insertion

of illegal records that would destroy the relationships between tables. Additionally,

an indexed property is appended to the foreign keys. Indexed keys are optimized

for querying to enable faster lookups (Smith, 2021). This is a beneficial adjustment

because all the lookups within Calendar Manager are done via primary keys, which

are automatically indexed, and foreign keys.

Figure 10 Underlying database.

4.4 Routing

Upon any request to the Calendar Manager web application, the request is parsed

through the routing middleware. This middleware parses the request into an applica-

tion endpoint. The parsing is based on a routing scheme, specified in a routing table.

The default scheme parses the first part of the path into a controller, and the second

part of the path into an action. For example, the path ‘/Calendar/About’ is forwarded

to the ‘About’ action in the ‘Calendar’ controller. If no action is specified, then the

’Index’ action of the specified controller is used. For example, both ‘.../Calendar/Index/’

and ‘.../Calendar/’ are routed to the same endpoint, the ‘Index’ action of the ‘Calendar’

controller. The latter scheme is used throughout Calendar Manager because all web

pages are main pages; there are no sub-pages.

↖Contents ↖Tables ↖Figures ↗References 20

4.4 Routing 5 System architecture

The desired dynamically generated booking session URL is of the form ‘.../Book-

ingSession/dynamicURL’. Under the current routing table pattern, this request would

look for an action which does not exist in the BookingSession controller. To enable this

specific pattern, a new pattern of the form ‘.../BookingSession/dynamicURL’ is added to

the routing table, where ‘dynamicURL’ is specified to be an id passed as a parameter.

The default endpoint for this pattern is also specified, which navigates to the ‘Index’

action of the ‘BookingSession’ where the ‘dynamicURL’ is passed in as a parameter

(Smith, 2021).

Route name Pattern Default endpoint

default ”{controller=Home}/{action=Index}” Not specified

bookingPage ”BookingSession/{id?}” new {controller=”Booking-

Session”, action=”Index”}

Table 1 Routing table within the routing middleware.

5 System architecture

5.1 Dependency injection

ASPN.NET provides support for its in-built dependency injection. Calendar Manager

utilizes this dependency injection for all its supporting business logic throughout the

project solution.

A dependency, for example a class within the class library, is registered within a

predefined dependency injection container as part of the application setup. This class is

now available as a dependency throughout the project solution. This dependency can

be used in some other class, where the object is passed through a constructor. Within

the constructor, it is then set to a class member variable, as a private field. This private

field is now available to the entire class.

This approach is preferable over hard-coding class instantiations throughout various

methods, as it avoids code duplication. Code duplication adds extra technical debt and

deteriorates maintainability. Dependency injection also aids with unit testing where the

user does not need to be concerned with instantiating classes throughout test methods,

as long as they declare the required dependencies through the test class constructor

(Smith, 2021).

5.2 Revised project structure

At the start of this project, it was decided that a class library would be used for all

reusable business logic. A class library was chosen over a ‘Services’ folder which would

have been placed within the Calendar Manager project. The ‘Services’ folder would

↖Contents ↖Tables ↖Figures ↗References 21

5.2 Revised project structure 5 System architecture

hold all business logic locally. The events retrieved from Google Calendar API are

returned as an array of JSON objects. A functionality for the application is needed,

which deserializes the wanted information into a list of ‘Event’ models. This list is

then passed to the browser which populates the calendar. This functionality cannot be

placed in the Calendar controller because the controllers should only handle browser

requests and routing. Logically, this functionality should be stored in the class library

with all the other supporting business logic. Creating a class in the class library which

handles this functionality requires access to ‘Event’ model. However, the ‘Event’ model

is in the ‘Calendar Manger’ project. A dependency on the ‘Calendar Manager’ is needed

to reference the ‘Event’ model. Now, the ‘Calendar Manager’ project is dependent on

the class library and the class library is dependent on the ‘Calendar Manager’ project,

creating a circular dependency. As a result, the project cannot be compiled without

compiling the library first, and the library cannot be compiled without compiling the

project first (Wikepdia-Contributors, 2021a).

The first solution to this problem is to create another class library, within the project

solution, which would contain this newly needed class, breaking the circular depend-

ency. This fixes the issue in the short term. When extending this application, new

classes can be made which may depend on all the previously created projects, requir-

ing more and more class libraries to break the circular dependency. Numerous class

libraries for the sake of breaking circular dependency clutters the project solution.

Additionally, it would become difficult to manage all the projects within the project

solution. The second, more appropriate option is to create the aforementioned ‘Services’

folder within the main project. The ‘Services’ folder contains business logic dependent

on other classes within the project, such as models or the database interface, and the

class library contains all independent business logic. The drawback now, is that there

are two sources of business logic, deteriorating from the compact project structure.

Alternatively, the class library business logic can be moved to the ‘Services’ folder,

adding more structure to the project. However, the decision has been made to keep

both sources of business logic because the benefits of having a class library outweigh

this minor drawback, given the project aim.

↖Contents ↖Tables ↖Figures ↗References 22

5.2 Revised project structure 5 System architecture

Figure 11 Circular dependency.

5.3 Browser-side HTML design

The purpose of HTML code is to define the structure of a web page. All Calendar

Manager pages utilize the standard wrapper HTML elements that form a valid HTML

page. The content within the <body> element should contain HTML elements that

describe the semantic meaning of each component within the web page. The HTML

language was not designed for this sole purpose. It was designed to include some

basic styling via non-semantic styling elements. Many current websites depend on

these non-semantic elements and therefore they cannot be dropped from the HTML

language. Throughout the evolution of HTML however, an effort has been made to

adjust the non-semantic elements’ meaning. For example, HTML 4 defines as

”bold”, whereas HTML 5 defines as ”bring attention to element”. There are still

some semantic elements which should be avoided, such as , therefore it is

important to distinguish between semantic and non-semantic elements.

All HTML pages of Calendar Manager strictly contain semantic elements only. The

only exception is the <div> element because styling pages without it, is unrealistic

and impossible within the confines of current state of web technologies and web

architecture. The <div> element is only used for wrapping and styling when no other

semantic element is appropriate.

The majority of Calendar Manager HTML code covers the default calendar and the

booking calendar. Both use extremely similar HTML markup. The <main> element

↖Contents ↖Tables ↖Figures ↗References 23

5.3 Browser-side HTML design 5 System architecture

represents the central functionality of the calendar page. For this reason, the page

navigation has been placed outside of this element. The <section> element is a generic

semantic element which depicts a singular, unrelated section within the web page. It

is mostly used when no other semantic element is appropriate and it helps alleviate

the <div> element usage. The <aside> element is used to represent supplementary

content related to the main content. Calendar Manager utilizes the <aside> element for

a side panel of the main calendar. The <aside> element is typically used alongside the

<main> element; however, Calendar Manager needs the <aside> content to be within

the <main> scope because of the Vue.js relationship with HTML elements, covered in

the next subsection. The final semantic element used is <article> which represents

an independent component, which can be reusable and attributable. The calendar

wrapper containing the calendar grid, as well as the booking popup, are defined as

an <article> within the calendar page, because they are being reused in the booking

session calendar page (MDN-Contributors, 2021).

↖Contents ↖Tables ↖Figures ↗References 24

5.3 Browser-side HTML design 5 System architecture

Figure 12 HTML semantic structure.

5.4 Browser-side Vue.js design

The Vue.js framework implements and adheres to a Model-View-ViewModel (MVVM)

pattern. MVVM enforces the separation of business logic and user interfaces. A View

represents the interface, in this case it is the HTML Document Object Model (DOM). The

Model holds business data. The ViewModel provides business logic and converts Model

data objects into View data objects. In the case of Calendar Manager, the ViewModel

is an instance of Vue and the Model is data contained within this instance (Wikepdia-

Contributors, 2021b).

An instance of a Vue object passes a JavaScript object through its constructor.

The properties specified within this JavaScript object define the Vue object. The first

property is ‘el’, which specifies a HTML DOM element that this Vue instance targets.

↖Contents ↖Tables ↖Figures ↗References 25

5.4 Browser-side Vue.js design 5 System architecture

This DOM element and all of its child elements are now treated as the View. Within

Calendar Manger, the Vue instance targets the <main> element as its ‘id’ value matches

the ‘el’ value. The <aside> element was placed within the <main> element as its

child, to allow its manipulation through this specific Vue instance. The ‘data’ property

stores all variables belonging to this specific Vue instance. This single property is

perceived as the Model. The next property ‘computed’, is a ViewModel. The ‘computed’

property contains functions which manipulate data from the ‘data’ property and pass

the results to the View. Within Calendar Manager, ‘computed’ property handles minor

computations, such as getting the number of days in February, depending on the year,

and minor validation, such as disabling the previous button when the year 2009 is

reached. The final property is ‘methods’. This is also a part of the ViewModel and is

reserved for larger functions (You et al., 2021).

Figure 13 Vue.js MVVM design.

The Vue object instantiation goes through a specific life-cycle, comparable to how a

compiler goes through several stages. Vue provides access to several methods which

are executed throughout this life-cycle. Upon the creation of a new Vue object, the

data of the Vue instance is read. Once the data is processed, Vue provides access to a

‘created’ function. This is reserved for preprocessing the instance data. The instance

data contains user events which were passed to the browser from Calendar Manager

server-side. Calendar Manager uses the ‘created’ method to ascertain the current date

fromwhich other helper data is computed. It also filters out long events from the events

list. The next step in the life-cycle is compiling the HTML DOM templates. A template is

a string that contains HTML code, which is then injected into the HTML DOM, the View

of Vue. Vue now mounts the DOM, where it establishes a link between the ViewModel

and the View. At this stage, the DOM elements are available to be manipulated through

the ViewModel. A ‘mounted’ function is now available. Calendar Manager utilizes this

‘mounted’ function to populate user events and booking events, and enforce validation

(You et al., 2021).

↖Contents ↖Tables ↖Figures ↗References 26

5.4 Browser-side Vue.js design 5 System architecture

Figure 14 Vue.js life-cycle (simplified).

5.5 Documentation

Documentation is critical in a project such as Calendar Manager, who’s key properties

are maintainability and extendibility. Appropriate documentation helps with under-

standing and reusing the Calendar Manager skeleton code.

C# provides XML documentation which binds to C# constructs such as classes or

methods. The XML documentation provides several XML tags. The <summary> tag

has been utilized to provide a description to every class within Calendar Manager.

Unlike a multi-line comment, the summary is baked into the signature of the class as a

description. When an external user wants to know the description of this class, they

do not need to locate the original source code for a multi-line comment description,

they just need to inspect the signature of the class (Wagner, 2021b). To document

methods, a preprocessor directive ‘#region’ has been used. This directive wraps around

a user-defined region and provides a user-defined label to it (Wagner, 2021a).

HTML comments are HTML markup with tag lines, which can add additional

meaning to semantic elements describing the HTML DOM. However, they can also

cause extra clutter within the HTML. Cluttering HTML can introduce extra difficulty

when perceiving the HTML DOM structure. The HTML elements have been specifically

designed, such that the semantic HTML element in combination with an appropriate

named class or id gives enough information about each HTML element in question.

Therefore, HTML comments are omitted. Any extra detail required to label HTML

elements is supplied in an external documentation, such as ‘5.3 Browser-side HTML

design’ section of this document.

Vue.js does not supply any additional constructs for documentation or comments.

The only constructs available are the vanilla JavaScript single line comments and

multi-line comments. The extension of Calendar Manager will most likely involve the

addition of new features. These features will be appended onto the current front-end

implementation of Calendar Manager. It is therefore imperative that all Vue instances

are well documented. In addition to comments labeling methods and describing code

blocks, a documentation should be supplied describing the high-level structure of

↖Contents ↖Tables ↖Figures ↗References 27

5.5 Documentation 6 Results

Vue instances and how the different components work with each other, such as ‘5.4

Browser-side Vue.js design’ section of this document.

6 Results

This project can be viewed in two parts. The implementation of the skeleton Calendar

Manager web application and appropriate use of software engineering design, making

the skeleton application extendable and scalable.

6.1 User interfaces

The deliverable component of this project is the Calendar Manager web application.

This component can be viewed via its two main interfaces. The evaluation of these

results is supplied in the ‘Analysis’ section via usability testing.

↖Contents ↖Tables ↖Figures ↗References 28

6
.1

U
se
r
in
te
rfa

ce
s

6
R
e
su

lts

Figure 15 Calendar UI.

↖
C
o
n
te
n
ts

↖
Ta
b
le
s

↖
F
ig
u
re
s

↗
R
e
fe
re
n
ce
s

2
9

6
.1

U
se
r
in
te
rfa

ce
s

6
R
e
su

lts

Figure 16 Booking UI.

↖
C
o
n
te
n
ts

↖
Ta
b
le
s

↖
F
ig
u
re
s

↗
R
e
fe
re
n
ce
s

3
0

6.1 User interfaces 6 Results

6.2 Software architecture

It can be difficult to assess whether appropriate software architecture has been used

within a software engineering project (Smith, 2021). To capture these results, the

Calendar Manager architecture is compared against a set of standard, predefined

software design principles. Principles which are not fully adhered to are then further

evaluated in the ‘Analysis’ section.

Design principle Adherence Use within Calendar Manager

Separation of concerns Yes MVC Middleware, project structure,

folder structure

Encapsulation Partial Class library

Dependency inversion Yes Inbuilt dependency injection

Explicit dependencies Yes All objects instantiated through con-

structor dependency injection

Single responsibility Partial Encapsulation of business logic

Don’t Repeat Yourself (DRY) Partial Encapsulation of business logic

Table 2 Predefined software design principles.

6.3 Accessibility

The accessibility of Calendar Manager is determined by referencing WCAG 2.1 (Kirk-

patrick et al., 2018). Each component of WCAG 2.1 is evaluated to determine whether or

not Calendar Manager adheres to this component guideline. Any intermediate steps

and calculations required, to derive at these conclusions, are displayed below. The full

test plan is supplied in Appendix B.

Visual component Contrast

Text inside the calendar, background 6.2

Text outside the calendar, background 9.71

Booking slot text, background 9.71

Disabled input field text, background 6.3

Non-text (Any two-color combination of the color scheme) over 3

Table 3 Contrast ratio of components within Calendar Manager.

↖Contents ↖Tables ↖Figures ↗References 31

7 Analysis

7 Analysis

7.1 Encapsulation principle evaluation

Encapsulation involves isolating parts of the project from each other. The use of a

class library ensures that business logic is completely separated from the main project.

A change of implementation within any class of the class library will not break any

functionality within the main project, given that no external contracts are violated.

External contracts are class and method signatures. These include class and method

names, constructors, method parameters and their types, and method return types.

Enforcing these external contracts can be achieved by introducing interfaces for all

business logic.

To ensure full encapsulation within Calendar Manager, each class of the class

library and the Services folder should be accompanied by a supplementary interface.

An extension or a re-implementation of business logic classes may result in altering

the class signature. Under the current implementation of Calendar Manger, this would

violate the external contracts within the main project, enabling the propagation of

errors throughout the entire project. However, an interface of such class, ensures that

an error is raised, allowing the user to alter the class implementation to adhere to its

corresponding interface, preserving the functionality of components dependant on

this class.

In addition to the use of interfaces, business logic classes should limit outside access

to their state. Their state should only be altered through setter methods (Smith, 2021).

The Calendar Manager application achieves this via the use of private fields with setter

methods and C# Properties constructs.

7.2 Single responsibility principle evaluation

The single responsibility principle is similar to the separation of concerns principle.

Separation of concerns is mainly associated with high-level system structure, whereas

the single responsibility principle covers both the high-level and low-level system com-

ponents. The high-level includes project structure, folder structure, and separation of

user interfaces, business logic, data access and system testing. The low-level compon-

ents include classes and methods. Each class should only have a single responsibility.

This responsibility should be implemented via a limited number of methods. When

extending some extra functionality, it is preferable to add it to a new class if possible,

rather than an already implemented class. Adding this extra functionality to a new

class is safer because re-implementing or adding extra methods to a functioning class

may cause dependency issues with components that depend on this already established

class (Smith, 2021).

The Calendar Manger application includes a case where the single responsibility

principle is violated. This occurs within the ‘Event Deserializer’ class which consists

↖Contents ↖Tables ↖Figures ↗References 32

7.2 Single responsibility principle evaluation 7 Analysis

of four methods. The first method parses a JObject retrieved from Google API into a

list of Event models. The second method retrieves user email string from the JObject

retrieved from Google API. The last two methods parse some models to some other

models. These last two methods were added to this class as they are both technically

deserializing an event. The Event Deserializer class has been presumed to be, and used

as a general parses for all types of objects. The Event Deserializer class has multiple

responsibilities.

Figure 17 Single responsibility principle violation.

To enforce the single responsibility principle, the methods should be split into

separate classes where each class has a single responsibility. The ‘API Deserializer’

handles the returned JObject and the ‘Models Parser’ handles parsing between models.

If the amount of methods increases, the ‘Models Parser’ can be broken down further,

where the ‘Models Parser’ is a folder rather than a class, with each specific model parser

being a separate class rather than a method. At the moment, a class to hold these is

sufficient, as using a folder would introduce redundancy and folder structure clutter.

A key detail within this example is enforcing appropriate naming conventions. The

name of a class that has a single responsibility should not be generalized, it should

be direct. ‘Event Deserializer’ is a general name, especially when there are lots of

parsing functions and events passed around within the Calendar Manager application.

The naming convention was the main reason for violating the single responsibility

principle in this case.

↖Contents ↖Tables ↖Figures ↗References 33

7.2 Single responsibility principle evaluation 7 Analysis

Figure 18 Single responsibility principle enforced.

7.3 Don’t Repeat Yourself (DRY) principle evaluation

The DRY principle is self explanatory. Logic throughout the application should not

be replicated (Smith, 2021). This has been achieved by creating specific constructs for

business logic within the ‘Services’ folder and the class library, which are reusable.

Additionally, the MVC design aids the DRY principle as constructed models are reused

throughout the application. Upon low-level code evaluation, Calendar Manager con-

tains several instances where this principle is being violated. This involves overusing

local variables and local variable declarations, where a field declaration would be

more appropriate. There have been many occurrences where a local variable was

needed, but it was declared out of scope. This resulted in either rewriting logic to

access this local variable or creating more local variables. This issue can arise again

when extending the system. A solution to this problem would be to declare all major

variables throughout all methods of a class as class member variables. This way, the

class member variables, capturing the state of an object, can be accessed and reused

from anywhere within the given class.

To adhere to the encapsulation principle, these class member variables must be

private. Within C#, class member variables can be declared as fields or properties. A

property is synthetic sugar for a private field with get and set methods. The get and

set methods tend to clutter code, whereas a default property is written in one line.

Therefore, the use of properties is preferable. Additionally, all dependencies passed

through the constructor are assigned to a private field. Using properties aids with

code readability and helps the user distinguish between the two types of class member

variables, where the class state is captured by properties and the dependencies are

capture by fields.

↖Contents ↖Tables ↖Figures ↗References 34

7.3 Don’t Repeat Yourself (DRY) principle evaluation 7 Analysis

The DRY principle has been completely violated within the front-end implementa-

tion. The default calendar functionality has been achieved by constructing a single Vue

instance. This gave the written JavaScript a well-defined structure. This Vue instance

is a single component, a very extensive component. This large Vue instance has been

copied over and used to create the booking calendar. This new Vue instance is slightly

altered, however most of the code is repeated, with some code being repeated and

redundant. A solution to this problem is to use Vue components. A component is just

another Vue instance. The single calendar Vue instance can be split up into several Vue

components. A component includes a template which holds HTML code. Templates

can then be injected back into the HTML page, the View. Each component should have

a single responsibility and should consist of one template. A proposed refactoring

strategy involves splitting up the calendar Vue instance into a tree of reusable compon-

ents. The calendar Vue instance is the root node. The child nodes are derived from the

aforementioned HTML semantic structure, where each node corresponds to a semantic

HTML element. The leaf nodes are then evaluated to decide whether it is appropriate

to split them even further. For example, the calendar wrapper is split further into a

component responsible for the calendar grid, and a component responsible for labeling

this grid with hours. These components can then be injection into both the default

calendar and the booking calendar, without duplicating their corresponding JavaScript

code (You et al., 2021).

Figure 19 Proposed calendar component system.

7.4 Testing

Calendar Manager employs three testing strategies. Unit testing is used to test single

units of code that do not have any dependencies. Automated unit tests have been

used to test all classes of the class library, because these classes do not depend on

any other classes. Integration testing is used to test units of code that have external

dependencies. Automated integration tests have been utilized to test every class within

↖Contents ↖Tables ↖Figures ↗References 35

7.4 Testing 7 Analysis

the ‘Services’ folder. All classes within this folder have dependencies on other classes,

mainly the ‘Models’ classes, and require their instantiation. Functional testing is used

to test whether the requirements and specifications of the system are met, from the

user’s perspective. Manual, functional tests have been employed to test the front-end

functionalities of Calendar Manager.

An application should mostly utilize unit tests, followed by integration tests, and

lastly, functional tests. This test distribution can be seen via the standardised testing

pyramid (Smith, 2021). Calendar Manager mostly employs functional testing because

the front-end calendar holds most of the functionality and logic within this application.

To shift the actual testing distribution towards the desired distribution, the calendar

preprocessing can be moved to the server-side where it can be tested using unit or

integration tests. This would include all functionality within Vue.js ‘created’ method,

such as filtering long events and computing current data. The results of these functions

can then be passed to the front-end, avoiding the front-end preprocessing stage. The

front-end testing could be further optimized by splitting the Vue instance into several

components, portrayed in the previous section. These components can then be tested

by a third party framework or a library, such as Vue Testing Library (You et al., 2021).

The leaf nodes of the proposed component system would be classed as unit tests, and

the remaining child nodes would be classed as integration tests. The result of this

refactoring would adhere to the desired testing pyramid.

The full test plan is supplied in Appendix B.

Figure 20 Desired testing pyramid (left) vs actual testing distribution

(right).

7.5 Accessibility testing

The WCAG 2.1 revolves around four main accessibility principles. First, the perceivable

principles ensures that all users are able to perceive all of the website content, using

one or more of their senses. Second, the operable principle ensures that all website

functionality must be operable using one or more standard input devices. Third, the

understandable principle ensures that all content is readable and predictable for all

↖Contents ↖Tables ↖Figures ↗References 36

7.5 Accessibility testing 7 Analysis

users. Lastly, the robust principle ensures that all content and functionality works

across different browsers and is designed using current web standards. Each of these

four principles contains several guidelines. Each guideline contains several criteria

which determine whether this guideline has been adhered to. Each criterion has a

level of conformance from A to AAA, where A covers the most common accessibility

issues and AAA covers rare accessibility issues. Passing AAA criteria is generally much

more difficult than passing A criteria (Kirkpatrick et al., 2018).

The testing strategy chosen is to manually evaluate each guideline by iterating over

all its criteria. If Calendar Manager adheres to all criteria within a guideline, then

the test passes, otherwise it fails. Testing these guidelines can be classed as functional

testing. Surprisingly, Calendar Manager adheres to most guidelines. This is because

Calendar Manager is a smaller application and does not contain all possible constructs

available within a web application. For example, guidelines ‘Guideline 1.2 Time-based

Media’ and ‘Guideline 2.3 Seizures and Physical Reactions’ are adhered to, simply

because Calendar Manager does not contain any time-based media, animations or

videos. The second main reason why Calendar Manager passes most guidelines is

because web technologies are already predefined and constructed with accessibility in

mind. For example, guideline ‘Guideline 2.1 Keyboard Accessible’ is adhered to because

browsers support keyboard shortcuts with inbuilt ‘onFocus’ visual aid to see the HTML

element in focus.

Calendar Manager did not adhere to two accessibility guidelines. ‘Guideline 1.1 Text

Alternatives’ states that each non-text element must contain a text alternative. This

is achieved by setting an appropriate name value that describes the purpose of the

non-text element. This criterion is Level A, meaning that it is very important to adhere

to. Adhering to this criterion allows any element within a web page to be rendered

visually, auditorily and tactilely. Luckily, adding name values to every element should

be straight forward. The second failed guideline is ‘Guideline 1.4 Distinguishable’. The

criterion ‘1.4.3 Contrast (Minimum)’ of Level AA, states that contrast ratios between

text and its background must be of at least 4.5:1. Contrast ratio is the difference in

luminance between two colors. All text within the application has a contrast ratio

over 4.5:1. Calendar Manager also adheres to ‘1.4.11 Non-text Contrast’ of level AA,

which states that all visual components must have at least 3:1 contrast ratio against all

adjacent colors. Any color combination within the Calendar Manager color scheme has

a contrast ratio that is over 3:1. The criterion ‘1.4.6 Contrast (Enhanced)’ of level AAA,

states that contrast ratios between text and its background must be of at least 7:1. This

criterion has not been passed as the lowest contrast ratio is 6.2. To pass this criterion

and adhere to the overall guideline, a new color scheme for Calendar Manager should

be chosen, because all text and its background follows this predefined color scheme.

The full test plan is supplied in Appendix B.

↖Contents ↖Tables ↖Figures ↗References 37

7.6 Documentation revised 7 Analysis

7.6 Documentation revised

To enforce the single responsibility principle, large components are split up into several

smaller components with a single responsibility. At low-level, this results in the creation

of more classes. At high-level, this results in the creation of more folders. As the

application grows, the number of projects, folders and subfolders will also grow. The

description and the purpose of classes and methods is covered by summaries and

regions. However there are no documentation tools to cover projects and folders.

Therefore, external documentation is needed that would describe the structure of the

project, but also the contents of each folder. This addition would result in a sufficient

documentation coverage.

During the unit testing stage, consisting of testing each method within the back-end

business logic, it was discovered that a region label is not sufficient. It was difficult

to remember what each method does and therefore, it was difficult to decide what

to test for. To overcome this issue, in addition to regions, summaries should also be

provided for each method within Calendar Manager. JavaScript does not provide the

functionality of XML documentation, therefore a description of front-end methods

should be supplied to the aforementioned external documentation describing the

front-end structure.

Figure 21 Proposed documentation coverage.

↖Contents ↖Tables ↖Figures ↗References 38

8 Conclusions

8 Conclusions

8.1 Summary of the project

Every substantial software development project has its highs and lows, with Calen-

dar Manager being no exception. Retrieving events from the Google Calendar API

has proved to be more difficult than expected. It required a full understanding and

implementation of OAuth 2.0 protocol. Implementation of this protocol introduced

the process of making requests and capturing responses via both, a predefined HTTP

client, and URL parameters. It also introduced the handling of client-side secrets, user

secrets, and assessing common security vulnerabilities during user authentication

and authorization. Processing the API events into models was straight forward due

to the MVC design. At this stage, it was discovered that storing client secrets within

the browser can introduce security vulnerabilities. It was therefore decided, that an

underlying database will be used to store the user secrets and control the state of

Calendar Manager. Integrating a database into the application was straight forward

because the entity framework allowed the use of C# syntax to construct the database

and handle data. Additionally, SQL Server Management Studio (SSMS) provided a very

intuitive interface which was used to query the database. The routing problem which

consisted of incorporating dynamic URLs within the system was tricky. However, it

was a very interesting problem to solve, as it provided an insight into the application

pipeline and middleware. The front-end implementation was extremely tricky. The

combination of learning a new framework, the weakly typed nature of JavaScript,

and the amount of functionalities needed for the calendar, introduced many hurdles

throughout the front-end development. Nevertheless, these hurdles were overcome

and project aims defined at the start of this project have been met.

8.2 Future work

The strict time constraint has been the major limitation to this project. With regards

to software design and architecture, several adjustments and re-implementations are

suggested within subsections of the ‘Analysis’ section. An improvement in software

design will enable easier implementation of additional features. Implemented addi-

tional features, on top of the current Calendar Manager skeleton, may result in a more

difficult design re-implementation. Therefore, these are the most critical aspects of

future work and should be prioritised.

CalendarManager has been specifically designed to be extendable andmaintainable

to allow for future addition of extra features. These features can be appended onto

the skeleton Calendar Manager. During the initial background research of calendar

scheduling web applications, a list of proposed features was constructed. This list is also

appended with feature suggestions provided by the project supervisor and inspector.

• View the default calendar as an image.

↖Contents ↖Tables ↖Figures ↗References 39

8.2 Future work 8 Conclusions

• Generate a shareable link for the default calendar.

• Generate a shareable link for the default calendar in incognito mode (hidden

events).

• Merging additional calendars into the original calendar.

• Calendar owner authorization to allow optional approval of events.

• Email notifications to calendar owner.

• Support for additional views of the default and booking calendars (daily, monthly,

yearly).

• Support for Outlook and Apple calendars.

• Real-time calendar updating.

8.3 Personal development

My main personal aim of this project was to develop my software engineering skills.

With previous knowledge in C#, my goal was to expand upon this by learning about

software design. I believe that this project has given me great exposure to software

engineering design and principles, which I believe have been appropriately utilized

within this project.

With extremely limited knowledge within front-end development, my goal was

to learn a JavaScript framework. Even though there is a lot to Vue.js framework, I

believe that I have managed to grasp the basics of this framework. Any future Vue.js

development will allow me to build upon the core basics learned throughout this

project.

The one thing that I will definitely take with me, until the end of programming days,

is adding alternative text to every non-text HTML element so that my websites pass

the ‘1.1 Text Alternatives’ Level A accessibility guideline. Such a simple implementation

that can make such a great difference to many users.

8.4 Reflections

Throughout the project, I have thoroughly enjoyed developing the back-end of Calendar

Manager. I find that building upon already known skills is easier and much more

interesting. My previous experience with the fundamentals of C# enabled me to study

the design and architecture of web applications by exploring the intricacies of the

ASP.NET framework in detail.

The front-end implementation of Calendar Manager has given me the most trouble

throughout the project. I have greatly underestimated the amount of time that it would

take to implement a fully functioning calendarwith an accompanying calendar booking

system. The calendar required the implementation of many unforeseen functionalities

↖Contents ↖Tables ↖Figures ↗References 40

8.4 Reflections 8 Conclusions

and edge cases. These issues were exacerbated by theweakly typed JavaScript language

and the lack of front-end debugging tools.

I must concede however, that it is naive to think that software engineering projects

run smoothly. If I had to start this project again, I would strip the project aims, features

and functionalities to a bare minimum, and I would add contingencies for my contin-

gencies. Regardless, these struggles were a vital part of my personal growth throughout

the project. Developing Calendar Manager has certainly exposed me to new skills and

knowledge, which have allowed me to achieve my personal aim of this project.

↖Contents ↖Tables ↖Figures ↗References 41

Test plan

A Test plan

A.1 Server-side testing

Test description Result

Rounds down minutes (int) to nearest five Pass

Short URL correct length Pass

Randomly generated 100 short URLs do not clash Pass

State token correct length Pass

Randomly generated 100 state tokens do not clash Pass

Table 4 Unit tests.

Test description Result

List of BookedEvent conversion to List of Event type check Pass

Chop 60min event with 20min period Pass

Chop 150min event with 30min period Pass

JObject conversion to List of Event type check Pass

Retrieve email (string) from JObject type check Pass

Retrieve email (string) from JObject contains ‘@’ Pass

ChosenEventResponse conversion to ChosenEventPost type check Pass

Table 5 Integration tests.

↖Contents ↖Tables ↖Figures ↗References 42

Test plan

A.2 Client-side use-case testing

Test description Result

User email is correct Pass

Initial dates and days of a week in a month correctly populated Pass

Initial dates and days of a week over two months correctly populated Pass

Initial month correctly populated Pass

Initial months correctly populated where two months overlap Pass

Initial year correctly populated Pass

Initial years correctly populated where two years overlap Pass

Previous button updates days, dates, months, years correctly Pass

Next button updates days, dates, months, years correctly Pass

Leap years have 29 days Pass

The previous button is disabled upon reaching the year 2010 Pass

List of long future events is correct Pass

List of long future events is in an ascending order of start date Pass

Event spanning over one day is correctly displayed Pass

Event spanning over two days is correctly displayed Pass

Event spanning over two days and over two weeks is correctly displayed Pass

Event spanning over two days and over two months is correctly displayed Pass

Event spanning over two days and over two years is correctly displayed Pass

All inserted events match Google calendar’s events color Pass

Populated events are disabled Pass

Booking prompt displays correct one hour time block based on user click position Pass

Table 6 Functional tests #1.

↖Contents ↖Tables ↖Figures ↗References 43

Test plan

Test description Result

Booking prompt contains validation for incorrect time format Pass

Booking prompt contains validation for time which overlaps an event Pass

Booking prompt contains validation for time which overlaps a previously booked event Pass

Booking slots are correctly displayed in the calendar Pass

Booking slots are correctly displayed in the booking slots list Pass

Booking slots are correctly displayed in an ascending order Pass

Close button deletes the corresponding booking from the booking list Pass

Close button deletes the corresponding booking from the calendar Pass

Period name has a 50 character limit Pass

Period allows integer input only Pass

Submit button is enabled once a booking slot is added Pass

Submit button displays the booking session shareable URL Pass

Booking button opens a booking popup Pass

Booking popup time and date correspond to the booking button Pass

Student name input has a 50 character limit Pass

Submit button writes an event into owner’s Google Calendar Pass

Submit button writes an event into owner’s Google Calendar with period name Pass

Submit button deletes the booked slot from the booking calendar Pass

Table 7 Functional tests #2.

↖Contents ↖Tables ↖Figures ↗References 44

Test plan

A.3 Usability testing

Accessibility guideline Result

1.1 Text alternatives Fail

1.2 Time-based media Pass

1.3 Adaptable Pass

1.4 Distinguishable Fail

2.1 Keyboard accessible Pass

2.2 Enough time Pass

2.3 Seizure and physical reaction Pass

2.4 Navigable Pass

2.5 Input modalities Pass

3.1 Readable Pass

3.2 Predictable Pass

3.3 Input assistance Pass

4.1 Compatible Pass

Table 8 Functional tests #3.

↖Contents ↖Tables ↖Figures ↗References 45

Source code

B Source code

The project solution can be found on the University of Birmingham git server. All code

written is my original work, unless otherwise specified.

https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2020/mxr080

↖Contents ↖Tables ↖Figures ↗References 46

https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2020/mxr080

References

References

Anderson, Rick. (2019). Enforce https in asp.net core. Retrieved July 8, 2021, from

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspne

tcore-5.0&tabs=visual-studio

Anderson, Rick et al. (2021). Aspnetcore.docs. Retrieved July 6, 2021, from https://githu

b.com/dotnet/AspNetCore.Docs

Anderson, Rick, Larkin, Kirk, Roth, Daniel & Addie, Scott. (2020). Safe storage of app

secrets in development in asp.net core. Retrieved July 25, 2021, from https://d

ocs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5

.0&tabs=visual-studio

Anderson, Rick & Smith, Steve. (2020). Asp.net core middleware. Retrieved July 8, 2021,

from https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware

/?view=aspnetcore-5.0

Auger, Robert. (2010). The cross-site request forgery (csrf/xsrf) faq. Retrieved July 13,

2021, from https://www.cgisecurity.com/csrf-faq.html

Azad, Badi. (2020). Openid connect. Retrieved July 13, 2021, from https://developers.goo

gle.com/identity/protocols/oauth2/openid-connect#createxsrftoken

Azad, Badi. (2021). Using oauth 2.0 to access google apis. Retrieved July 9, 2021, from

https://developers.google.com/identity/protocols/oauth2

Daugherty, Brian. (2021a). Using oauth 2.0 for web server applications. Retrieved July

28, 2021, from https://developers.google.com/identity/protocols/oauth2/web-serv

er#incrementalAuth

Daugherty, Brian. (2021b). Using oauth 2.0 for web server applications. Retrieved July

28, 2021, from https://developers.google.com/identity/protocols/oauth2/web-serv

er#protectauthcode

de Kunder, Maurice. (2016). The size of the world wide web (the internet). Retrieved

July 5, 2021, from https://www.worldwidewebsize.com/

Dix, Alan, Finaly, Janet, Abowd, Gregory & Beale, Russel. (2005). Human-computer

interaction. Retrieved July 26, 2021, from https://scholar.google.co.uk/scholar?q

=Human-computer+interaction++alan+dix&hl=en&as_sdt=0&as_vis=1&oi=scho

lart

Gould, Sandy, Cox, Anna, Brumby, Duncan & Wiseman, Sarah. (2016). Short links and

tiny keyboards: A systematic exploration of designtrade-offs in link short-

ening services. Retrieved July 13, 2021, from https://www.sciencedirect.com/sci

ence/article/pii/S1071581916300854

Hardt, Dick. (2012). The oauth 2.0 authorization framework. Retrieved July 9, 2021,

from https://datatracker.ietf.org/doc/html/rfc6749#section-1.2

Huckle, Natasha. (2019). Evaluation using PROMPT. Retrieved June 22, 2021, from http:

//www.open.ac.uk/libraryservices/documents/advanced-evaluation-using-prom

pt.pdf

↖Contents ↖Tables ↖Figures ↗References 47

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5.0&tabs=visual-studio
https://github.com/dotnet/AspNetCore.Docs
https://github.com/dotnet/AspNetCore.Docs
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-5.0
https://www.cgisecurity.com/csrf-faq.html
https://developers.google.com/identity/protocols/oauth2/openid-connect#createxsrftoken
https://developers.google.com/identity/protocols/oauth2/openid-connect#createxsrftoken
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://developers.google.com/identity/protocols/oauth2/web-server#protectauthcode
https://developers.google.com/identity/protocols/oauth2/web-server#protectauthcode
https://www.worldwidewebsize.com/
https://scholar.google.co.uk/scholar?q=Human-computer+interaction++alan+dix&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.uk/scholar?q=Human-computer+interaction++alan+dix&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.uk/scholar?q=Human-computer+interaction++alan+dix&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://www.sciencedirect.com/science/article/pii/S1071581916300854
https://www.sciencedirect.com/science/article/pii/S1071581916300854
https://datatracker.ietf.org/doc/html/rfc6749#section-1.2
http://www.open.ac.uk/libraryservices/documents/advanced-evaluation-using-prompt.pdf
http://www.open.ac.uk/libraryservices/documents/advanced-evaluation-using-prompt.pdf
http://www.open.ac.uk/libraryservices/documents/advanced-evaluation-using-prompt.pdf

References

Kappert, Lars et al. (2021). Programming principles. Retrieved July 6, 2021, from https:

//github.com/webpro/programming-principles

Kirkpatrick, Andrew, Connor, Joshue, Campbell, Alastair & Cooper, Michael. (2018).

Web content accessibility guidelines (wcag) 2.1. Retrieved July 13, 2021, from

https://www.w3.org/TR/2018/REC-WCAG21-20180605/

Lodderstedt, Torsten et al. (2013). Threat: Disclosure of client credentials during

transmission. Retrieved July 23, 2021, from https: / /datatracker. ietf .org/doc

/html/rfc6819#section-4.3.3

Mandalios, Jane. (2013). Radar: An approach for helping students evaluate internet

sources. Retrieved July 5, 2021, from https://journals.sagepub.com/doi/abs/10.11

77/0165551513478889

MDN-Contributors. (2021). Html: Hypertext markup language. Retrieved July 13, 2021,

from https://developer.mozilla.org/en-US/docs/Web/HTML

Myhre, Sarah. (2012). Using the craap test to evaluate websites. Retrieved July 5, 2021,

from https://scholarspace.manoa.hawaii.edu/handle/10125/22479

Pekarsky, Max. (2020). Does your web app need a front-end framework? Retrieved

July 10, 2021, from https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-en

d-framework/

Smith, Steve. (2021). Architecting modern web applications with asp.net core and

microsoft azure. Retrieved July 6, 2021, from https://docs.microsoft.com/en-us

/dotnet/architecture/modern-web-apps-azure/

W3Schools-Contributors. (2021). Html references. Retrieved July 13, 2021, from https:

//www.w3schools.com/html/

Wagner, Bill. (2021a). C# preprocessor directives. Retrieved August 22, 2021, from http

s://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-di

rectives

Wagner, Bill. (2021b). Recommend xml tags for c# documentation comments. Re-

trieved August 22, 2021, from https://docs.microsoft.com/en-us/dotnet/csharp/lan

guage-reference/xmldoc/recommended-tags

Wikepdia-Contributors. (2021a). Circular dependency. Retrieved August 3, 2021, from

https://en.wikipedia.org/wiki/Circular_dependency

Wikepdia-Contributors. (2021b). Model-view-viewmodel. Retrieved August 14, 2021,

from https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewm

odel

Wikepdia-Contributors. (2021c). Universally unique identifier. Retrieved July 26, 2021,

from https://en.wikipedia.org/wiki/Universally_unique_identifier

You, Evan et al. (2021). Vue.js guide. Retrieved July 13, 2021, from https://github.com/vu

ejs/vuejs.org/tree/master/src/v2/guide

↖Contents ↖Tables ↖Figures ↗References 48

https://github.com/webpro/programming-principles
https://github.com/webpro/programming-principles
https://www.w3.org/TR/2018/REC-WCAG21-20180605/
https://datatracker.ietf.org/doc/html/rfc6819#section-4.3.3
https://datatracker.ietf.org/doc/html/rfc6819#section-4.3.3
https://journals.sagepub.com/doi/abs/10.1177/0165551513478889
https://journals.sagepub.com/doi/abs/10.1177/0165551513478889
https://developer.mozilla.org/en-US/docs/Web/HTML
https://scholarspace.manoa.hawaii.edu/handle/10125/22479
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://github.com/vuejs/vuejs.org/tree/master/src/v2/guide
https://github.com/vuejs/vuejs.org/tree/master/src/v2/guide

	Abstract
	Introduction
	Overview
	Limitations
	Definitions
	Report structure

	Background
	PROMPT
	Reference web applications
	Calendar API
	Server side framework
	Software architecture reference
	Application architecture
	Server side solution structure
	Web technologies
	Web accessibility reference

	High level system overview
	Calendar skeleton
	Booking system

	System implementation
	User authentication and authorization
	API
	Database
	Routing

	System architecture
	Dependency injection
	Revised project structure
	Browser-side HTML design
	Browser-side Vue.js design
	Documentation

	Results
	User interfaces
	Software architecture
	Accessibility

	Analysis
	Encapsulation principle evaluation
	Single responsibility principle evaluation
	Don't Repeat Yourself (DRY) principle evaluation
	Testing
	Accessibility testing
	Documentation revised

	Conclusions
	Summary of the project
	Future work
	Personal development
	Reflections

	Test plan
	Server-side testing
	Client-side use-case testing
	Usability testing

	Source code
	References

